Actualizado el 21/01/2025

icon Facebook icon Twiiter icon RSS icon EMAIL
  1. Portada
  2. >
  3. Noticias
  4. >
  5. Siete claves para evitar el fracaso de los proyectos de la IA

Siete claves para evitar el fracaso de los proyectos de la IA

Escrito por Agencias Externas el 12/04/2022 a las 17:39:25
912

La digitalización es uno de los ejes prioritarios de las estrategias empresariales tanto en la actualidad como para los próximos años. También lo es para el Gobierno de España, que ha establecido en la ‘Agenda España Digital 2025’ unos objetivos de competencias digitales con el foco tanto en la sociedad como en las pymes.


Una de las herramientas con las que cuentan las empresas es la Inteligencia Artificial. Según datos de la consultora Gartner, en el año 2025 la AI liderará la inversión tecnológica de estas. Sin embargo, estos proyectos de Inteligencia Artificial todavía no son exitosos, ya que, como indicaba el psicólogo y profesor de la Universidad de Harvard Howard Gardner, el 85% de ellos fracasan.


Ante esta circunstancia, Francisco Díaz, business analyst en Compensa Capital Humano, del grupo Howden, aporta siete recomendaciones para conseguir que la Inteligencia Artificial se implemente de manera eficaz en las empresas:


1. Buscar un promotor interno para el proyecto


Una de las causas principales de fracaso en los proyectos de AI es la falta de soporte y liderazgo. Las iniciativas en este campo son muy atractivas, pero sus probabilidades de fracaso son altas. Por ello, es deseable crear un prototipo que ilustre el concepto, sin necesidad de emplear todos los recursos, y ayude a vislumbrar sus resultados.


2. Colaboración en la data


La Inteligencia Artificial se basa en la data y, en mayor o menor medida, la empresa tendrá personas o grupos que manejen información necesaria para el proyecto. Por lo que tiene que haber alguien en disposición de pedirles esta información. La falta de colaboración es otra de las causas de fracaso más frecuentes y se manifestará también en la reticencia a asignar recursos al proyecto para una gran variedad de tareas a ejecutar fuera del desarrollo en sí.


3. Selección óptima de las iniciativas de Machine Learning


Un proyecto de estas características requiere de una inversión en recursos, que necesitarán estar bien planificados para justificar su coste. En la propuesta es preferible centrarse en la problemática de negocio que resuelven en vez de en las características tecnológicas. Además, deberá incluir un ROI (retorno de la inversión) aproximado, el tiempo de comercialización de la idea, el esfuerzo estimado y los escollos que habrá que salvar. Sin olvidar un análisis de viabilidad técnica.


4. Confeccionar un acta de constitución del proyecto (Project chárter)


La definición del proyecto y de sus requerimientos es trascendental para poder empezar el desarrollo del mismo. Este project chárter debe conocer el alcance del proyecto, qué queremos construir y los objetivos de negocio.


5. Composición del equipo


Para evitar la falta de experiencia y la desconexión entre desarrollo de software y ciencia de datos hay que definir los perfiles necesarios. Necesitaremos un especialista en data science, pero también un ingeniero de datos (data engineer) con conocimientos de IT y programación más tradicional. Es esencial que intervengan en el equipo expertos de negocio para que puedan ir realizando un seguimiento de los resultados.


No necesariamente tendrán que ser incorporados externamente, muchas veces ya existen recursos en la propia empresa o posibilidades de formación más adecuados.


6. Involucrar a stakeholders


En la vida útil del proyecto, se van a dar interacciones con una gran variedad de profesionales y proveedores que se deben de gestionar adecuadamente. Hay que ser conscientes también de las reticencias que puede ocasionar la AI como sustituto de tareas que actualmente realizan.


7. Un seguimiento constante


Los problemas no pueden surgir únicamente en la implantación del proyecto, sino que es necesario prestar atención a cómo ejecutar lo que hemos dibujado. Las posibilidades de la inteligencia artificial son infinitas, por lo que es recomendable mantener un alcance conservador e instaurar fases de desarrollo. Además, hay que tener en mente que los proyectos de AI tienen un componente de desarrollo de software, pero que también es importante escoger el método de gestión adecuado.


Por último, y aparte de las anteriores recomendaciones, Francisco Díaz explica que el conjunto de tecnologías y algoritmos que podemos elegir para implementar nuestras soluciones es muy amplio. “Es importante escoger soluciones simples y transparentes, y, sobre todo, que sea fácil de explicar su funcionamiento interno”, concluye.